3-(1600/x^2)=0

Simple and best practice solution for 3-(1600/x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3-(1600/x^2)=0 equation:



3-(1600/x^2)=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1600/x^2+3=0
We multiply all the terms by the denominator
3*x^2-1600=0
We add all the numbers together, and all the variables
3x^2-1600=0
a = 3; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·3·(-1600)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*3}=\frac{0-80\sqrt{3}}{6} =-\frac{80\sqrt{3}}{6} =-\frac{40\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*3}=\frac{0+80\sqrt{3}}{6} =\frac{80\sqrt{3}}{6} =\frac{40\sqrt{3}}{3} $

See similar equations:

| 5y^2+10y=14y-5 | | -16x^2+176x+135=0 | | 3v-8=4 | | 75+y+5=180 | | 42x(6/7x6/7)x(1/6x1/6x1/6)=x | | 950+z/2=987 | | 4/723=x | | (x÷5)+18=33 | | 5x-(-4)=4x-9 | | e/13+141=144 | | 4y-40=3y | | x/4/7=23 | | 543-z/2=432 | | 6+5x-10=4x-9 | | (84)+1p=8p | | 2(4x-5)=6x-2 | | 7+4(6)=x | | 6+5(x-2)=4x-9 | | 5Xa=-85 | | 60=18+3o | | 3x+5•(-5x/2+5)=15 | | 24+d/4=10 | | 7+4(6)=a | | 18y–6y=11y+22+y | | -2x2+4x-6=0 | | x​^4​​(x+6)(3x+6)^​2​=0 | | 52=7x-116 | | 4(x+3)-6x=28 | | 3^(-10n)+2=38 | | 10^3x-1^+4=32 | | 6x-240=0 | | .25=4^x |

Equations solver categories